Relativistic supersymmetric quantum mechanics based on Klein–Gordon equation
نویسندگان
چکیده
منابع مشابه
Relativistic supersymmetric quantum mechanics based on Klein-Gordon equation
Witten's non-relativistic formalism of supersymmetric quantum mechanics was based on a factorization and partnership between Schrödinger equations. We show how it accommodates a transition to the partnership between relativistic Klein-Gordon equations.
متن کاملLogical inference approach to relativistic quantum mechanics: Derivation of the KleinGordon equation
The logical inference approach to quantum theory, proposed earlier De Raedt et al. (2014), is considered in a relativistic setting. It is shown that the Klein–Gordon equation for a massive, charged, and spinless particle derives from the combination of the requirements that the space–time data collected by probing the particle is obtained from the most robust experiment and that on average, the...
متن کاملSupersymmetric Quantum Mechanics and Painlevé IV Equation
As it has been proven, the determination of general one-dimensional Schrödinger Hamiltonians having third-order differential ladder operators requires to solve the Painlevé IV equation. In this work, it will be shown that some specific subsets of the higher-order supersymmetric partners of the harmonic oscillator possess third-order differential ladder operators. This allows us to introduce a s...
متن کاملOn supersymmetric quantum mechanics
This paper constitutes a review on N = 2 fractional supersymmetric Quantum Mechanics of order k. The presentation is based on the introduction of a generalized Weyl-Heisenberg algebra Wk. It is shown how a general Hamiltonian can be associated with the algebra Wk. This general Hamiltonian covers various supersymmetrical versions of dynamical systems (Morse system, PöschlTeller system, fractiona...
متن کاملExtended Supersymmetric Quantum Mechanics
A parametrization of the Hamiltonian of the generalized Witten model of the SUSY QM by a single arbitrary function in d = 1 has been obtained for an arbitrary number of the supersymmetries N . Possible applications of this formalism have been discussed. It has been shown that the N = 1 and 2 conformal SUSY QM is generalized for any N . Submitted to the Physics Letters B.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics A: Mathematical and General
سال: 2004
ISSN: 0305-4470,1361-6447
DOI: 10.1088/0305-4470/37/40/016